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Abstract. The unitary transformation which diagonalizes the squared Dirac equation in a constant chro-
momagnetic field is found. Applying this transformation, we find the eigenfunctions of the diagonalized
Hamiltonian, that describes the states with a definite value of energy, and we call them energy states. It
is pointed out that the energy states are determined by the color interaction term of the particle with the
background chromofield, and this term is responsible for the splitting of the energy spectrum. We construct
supercharge operators for the diagonal Hamiltonian that ensure the superpartner property of the energy
states.

PACS. 03.65.-w

1 Introduction

Classical color field configurations are important for the
study of theoretical problems of non-Abelian charged par-
ticles. These problems are connected with QCD prob-
lems [1–6, 17–36], and their study gives valuable informa-
tion on different effects in QCD.
Because color magnetic fields have special significance

for the vacuum state of QCD [1–4], in [7] and [8] one con-
sidered the motion of colored particle in such fields. For
giving a constant and homogeneous color background the
constant vector potentials introduced in [9, 10] were ap-
plied, and the squared Dirac equation was solved for this
problem. The similarity of this motion to the motion of
an electron in an ordinary magnetic field is that in both
cases we have circular orbits for the motion in the uniform
(chromo-) magnetic field and well-known s, p, d, f , . . .
orbitals in a background field having spherical symmetry.
But the energy spectrum in the non-Abelian problem dif-
fers from the one in the Abelian case, and in the quantized
spectrum case it does not look like Landau levels. This is
entirely connected with the matrix structure of the color
interaction and the color matrix structure of the quantum
mechanics of non-Abelian charged particles.
In addition to non-diagonal spin matrices the Dirac

equation for these particles contains non-diagonal color
matrices. These matrices mix different color and spin com-
ponents of the wave function in the equations for these
components, which are obtained from the squared Dirac
equation. As a result of such mixing, we cannot write an
eigenvalue equation separately for each color state and for
each spin state in the general case of the background field.
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Therefore, we are not able to have the known wave func-
tions correspond to the spectrum and thus to determine
the energy of each state with a definite value of spin and
color spin. We neither have a wave function for the descrip-
tion of the states with definite energy. The way out of this
situation is to diagonalize the squared Dirac operator in
the color spin or combined spin–color spin spaces. For this
we should find a unitary transformation diagonalizing this
operator. The wave function of the particle, as a matrix in
these spaces, also will transform under this transformation.
New transformed states will obey the eigenvalue equation
for the diagonalized squared Dirac operator. We aim to
find this transformation and bymeans of it to construct the
states – eigenfunctions of the diagonalized squared Dirac
equation for the considered case of a constant chromomag-
netic background.
Another property of problems in quantum mechanics –

supersymmetry in the Dirac equation – has been consid-
ered before for this kind of chromomagnetic background
field as well [18, 19, 50]. It is reasonable to reconsider the
supersymmetry for the diagonalized Hamiltonian and to
construct the supercharge operators for the diagonal repre-
sentation. Knowing the states with definite energy gives us
the possibility to study the question of superpartner states
in this supersymmetry and thus to treat supersymmetry as
the origin of the spectrum degeneration. We suppose that
the new supercharge operators will ensure the superpart-
nership of the energy states.

2 Axial chromomagnetic field

The Dirac equation for a colored particle in an external
color field is obtained from the one for a free particle by a
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momentum shift:

(
γµPµ−M

)
ψ = 0 , (1)

where Pµ = pµ+gAµ = pµ+gA
a
µλ
a/2; the λa are the Gell–

Mann matrices describing the particle’s color spin, and
within the SUc(3) color symmetry group g is the color in-
teraction constant and the color index a runs over a =
1, . . . , 8. Written for the Majorana spinors φ and χ (1) we
have the well-known form

(
σiPi
)2
ψ =−

(
∂2

∂t2
+M2

)
ψ , (2)

where the Pauli matrices σi describe the particle’s spin.
Hereafter ψ means φ or χ. The spinors φ and χ have two
components corresponding to the two spin states of a par-

ticle, ψ =

(
ψ+
ψ−

)
. Each component of ψ transforms under

the fundamental representation of the color group SUc(3)
and has three color components describing the color states
of a particle corresponding to the three eigenvalues of the
color spin λ3:

ψ± =

⎛

⎝
ψ±(λ

3 =+1)
ψ±(λ

3 =−1)
ψ±(λ

3 = 0)

⎞

⎠=

⎛

⎜
⎝
ψ
(1)
±

ψ
(2)
±

ψ
(3)
±

⎞

⎟
⎠ . (3)

We are going to continue the study of the motion in the
chromomagnetic field started in [7], where we applied the
constant vector potentials introduced in [9, 10]. Recall that
for giving an axial chromomagnetic field by a constant vec-
tor potential, the components of the latter are chosen as
follows:

Aa1 =
√
τδ1a , A

a
2 =
√
τδ2a , A

a
3 = 0 , A

a
0 = 0 , (4)

where τ is a constant and δµa is the Kronecker symbol.
For this Aaµ all components of the field strength tensor

F cµν = gf
abcAaµA

b
ν are equal to zero, except for

F 312 = gτ =H
3
z , (5)

and (4) gives a constant chromomagnetic field directed
along the third axes of the ordinary and color spaces. Here
the fabc are the structure constants of the SUc(3) group.
Setting (4) and i∂ψ/∂t= Eψ in (2), we obtain the fol-

lowing two equations for the ψ±, which differ from each
other by the sign of the last term in the left hand side:
[
p2+

1

2
g2τI2+ gτ

1/2

(
p1λ

1+p2λ
2∓
1

2
gτ1/2λ3

)]
ψ±

= (E2−M2)ψ± . (6)

Here I2 =

⎛

⎝
1 0 0
0 1 0
0 0 0

⎞

⎠ is the color matrix. Because the

field (5) is directed along the third axis, ψ± describes the
spin states with the up and down projections of σ3 and
the Hamiltonians defined as H±ψ± = E

2ψ± correspond to

these spin states. Because the non-diagonal λ1 and λ2 ma-
tricesH± have no diagonal color structure, we cannot write
the eigenvalue equation

H±ψ
(i)
± =E

2ψ
(i)
±

for pure color states ψ
(i)
± , except for the states ψ

(3)
± . The

explicit matrix form of the general Hamiltonian in the com-
bined color and spin spaces is

H =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

P2 Gp− 0 0 0 0
Gp+ P2+G2 0 0 0 0
0 0 P2 0 0 0
0 0 0 P2+G2 Gp− 0
0 0 0 Gp+ P2 0
0 0 0 0 0 P2

⎞

⎟
⎟
⎟
⎟
⎟
⎠
. (7)

For brevity we have introduced the notation P2 = p2+
M2, G = gτ1/2, p± = p1± ip2. Non-diagonality of (7) leads
to mixing of the different color states ψ(i) in the differential
equations obtained from (6). But the equation for the pure

states ψ
(1),(2)
± obtained from (7) has the same form for all

the color and spin states [7]. In the cylindrical coordinates

the common equation for ψ
(1),(2)
± has a solution expressed

by the Bessel function Jm(x):

ψ
(i)
± (r) =

+∞∑

m=−∞

1

2π
eimϕ exp(ip3z)Jm(p⊥r)ξ

(i)
± . (8)

Here m is the chromomagnetic quantum number and ξ
(i)
±

includes the spin and color spin parts of the wave function.
Similarly to the spin part of the wave function, ξ

(i)
± can be

chosen as follows:

ξ
(i)
+ =

1
√
2

(
1
0

)
ζ(i), ξ

(i)
− =

1
√
2

(
0
1

)
ζ(i) ;

ζ(1) =
1
√
3

⎛

⎝
1
0
0

⎞

⎠ , ζ(2) =
1
√
3

⎛

⎝
0
1
0

⎞

⎠ , ζ(3) =
1
√
3

⎛

⎝
0
0
1

⎞

⎠ .

Thus chosen, ξ obeys the normalizing condition

∣
∣ξ(i)+
∣
∣2+
∣
∣ξ(i)−
∣
∣2 = |ζ(1)|2+ |ζ(2)|2+ |ζ(3)|2 = 1 .

Let us remind the reader that in spite of the same r-
dependence of all these states, the different ψ

(i)
± (r) trans-

forms differently under transformations in the spin and
color spaces. This solution is similar to the one for rela-
tivistic motion of an electron in an axial magnetic field [11]
and in the classical picture gives motion on circular or-
bits [7]. The energy spectrum for (6) was found by solving
the determinant equation obtained from it and has three
continuous branches in the case of infinite motion [14–17]:

E21,2 = (P⊥∓G/2)
2+p23+M

2, E23 = P
2, (9)

where P⊥ =
√
p2⊥+G

2/4, p2⊥ = p
2
1+p

2
2. The equation for

the state ψ
(3)
± (r) is the equation for the free particle
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P2ψ(3)± (r) = (p
2+M2)ψ

(3)
± (r) and the solution (8) can be

regarded as well.
For the motion limited by a cylinder with radius r0, the

quantized spectrum has the form [7]

(
E(N)m

)2
1,2
=

(√(
α
(N)
m

r0

)2
+
G2

4
∓G/2

)2
+p23+M

2,

(
E(N)m

)2
3
=

(
α
(N)
m

r0

)2
+p23+M

2.

Here α
(N)
m are the Bessel function’s zeros, and N is the

radial quantum number. The finite motion solution is con-
nected with the one for the infinite motion by the replace-
ment p⊥ = α

(N)
m /r0 in (8) and for the wave function we do

not sum over them inasmuch as quantized energy levels are
determined by this quantum number:

ψ
(i)
± (r) =

1

2π
eimϕ sin(p3z)Jm

(
α(N)m r/r0

)
ξ
(i)
± .

Hereafter, by p and the spectrum E2i we shall mean
both their continuous and quantized values. The spectrum
found in such a way is not determined by the value of the
projection of the color spin operator λ3 onto the field (5).

This means that the states ψ
(1),(2)
± have not definitely got-

ten the energy from the branches E1 or E2. They can get
energy from both branches of the energy spectrum (9),
but with a different probability. Then the question arises
as to what the wave functions are of states having a def-
inite energy from the branch E1 or from the branch E2.
It is clear that for such states we would be able to write
the eigenvalue equation with the spectrum branches (9),
and this equation can be written only for the diagonal ma-
trix form of the Hamiltonian. So we need the diagonal form
of the Hamiltonian (7) in the combined spin–color spin
space, in order to write eigenvalue equation by it and then
to determine its eigenfunctions. Since the Hamiltonian is
a hermitian matrix, it has a diagonal form in the basis of
its eigenfunctions, and this diagonal form is unique. We
can find the diagonal form of H ′ for the Hamiltonian (7)
and then its diagonal elements will correspond to the spec-
trum branches from (9). By H ′ we will be able to write an
eigenvalue equation with the eigenvalues from (9):

H ′Ψ ′ =E2kΨ
′. (10)

Here Ψ ′ is the eigenfunction of H ′, which is different from
ψ
(1),(2)
± . In order to get the diagonal H ′ from the non-
diagonal Hamiltonian H (7), we should make some trans-
formation U in the combined spin–color spin space. The
wave functions ψ

(i)
± will be transformed by this transform-

ation as well. More precisely, the Hamiltonian (7) will get
the diagonal form under some U transformation of the ba-
sis vectors of the combined spin–color spin space. The basis
vectors in the combined space are the solutions ψ

(i)
± (their

ξ
(i)
± part), since the eigenfunctions of the spin and color
spin operators σi and λa are these functions. Under U
transformation of the combined space, the basis vectors,

i.e. ψ
(i)
± , transform according to the rule

Ψ ′ = UΨ , Ψ =

⎛

⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

ψ
(1)
+

ψ
(2)
+

ψ
(3)
+

ψ
(1)
−

ψ(2)_

ψ
(3)
−

⎞

⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

. (11)

The components of the new basis vector Ψ ′ will not be
states with definite values of the projection of spin or color
spin and will be some superposition of the ψ

(i)
± . As we

stated above, ifH ′ is diagonal, then the basis vectors of this
space are the eigenvectors of this Hamiltonian. So these
components are the states with definite values of the en-
ergy, because they are eigenfunctions ofH ′ with the eigen-
valueE2k from (9). We call the components of Ψ

′ the energy
states because of describing the states having a definite
energy from the branchesEk. SinceH

′ is unique, the trans-
formation matrix U and the basis vector Ψ ′ are unique as
well.1

Under transformation (11) the Hamiltonian (7), as
any matrix in this space, transforms by a similarity
transformation:

U−1HU =H ′. (12)

The difficulty of determiningH ′ is that we have no explicit
form of either U orH ′; two of three matrices in (12) are un-
known. But, fortunately, it turns out to be possible to find
both of these matrices, relying on their properties. Firstly,
from the hermiticity of H ′ we can conclude that the trans-
formation matrix U , in addition to being unique, should be
unitary:

H ′† = U†H†U−1† =H ′ = U−1HU ,

U−1† = U ⇒ UU† = 1 .

Equation (12) is the basic relation between two Hamilto-
nian matrices H and H ′. Multiplied from the right hand
side by U it has got a more useful form for solving, since it
contains only the linear relations between the elements uij
of the U matrix:

HU = UH ′. (13)

Another important point for finding H ′ and U is that the
unitary transformation does not change the determinant
and trace of a matrix:

detH ′ = detU−1 detH detU = detH , TrH =TrH ′.
(14)

The matrices H, H ′ and U are 6×6 matrices. Due to the
quasidiagonal form of (7) we can separately consider two

1 We have ignored that the wave functions in quantum me-
chanics are defined up to phase factor. We shall come to this
circumstance later.
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3×3 Hamiltonians H±, instead of a 6×6 one. Of course,
(13) and (14) will hold for both of them, but with differ-
ent matrices U± respectively. The matrices U± belong to
the color symmetry group SUc(3), so they obey the uni-
modularity condition as well. Solving equations obtained
from (13) jointly with the equations of unitarity and uni-
modularity we find2 the U± matrices explicitly:

U± =

(
1

2P⊥

)1/2

×

⎛
⎜⎝

(P⊥+G/2)
1/2eiα ±p−(P⊥+G/2)

−1/2e−iα 0

∓p+(P⊥+G/2)
−1/2eiα (P⊥+G/2)

1/2e−iα 0

0 0 (2P⊥)
1/2

⎞
⎟⎠

(15)

and establish the diagonal elements of H ′±, which respec-
tively are equal to

h′11 = P
2−GP⊥+G

2/2 , h′22 = P
2+GP⊥+G

2/2 ,

h′33 = P
2 (16)

and

h′′11 = P
2+GP⊥+G

2/2 , h′′22 = P
2−GP⊥+G

2/2 ,

h′′33 = P
2. (17)

According to (12) the matrix

U =

(
U+ 0
0 U−

)

will reduce the Hamiltonian (7) to the following diagonal
form:

H ′ =

⎛

⎜
⎜⎜
⎜
⎜
⎝

h′11 0 0 0 0 0
0 h′22 0 0 0 0
0 0 h′33 0 0 0
0 0 0 h′′11 0 0
0 0 0 0 h′′22 0
0 0 0 0 0 h′′33

⎞

⎟
⎟⎟
⎟
⎟
⎠
. (18)

In spite of the U matrix being a transformation of 6-
dimensional spin–color spin space, indeed it transforms
the color space, because it has a quasidiagonal form and
does not mix spin indices. Comparing the explicit forms
of the diagonal elements (16) and (17) with the energy
branches (9) the correspondence between them can easily
be established:

h′22 , h
′′
11 −→E

2
1 ,

h′11 , h
′′
22 −→E

2
2 ,

h′33 , h
′′
33 −→E

2
3 . (19)

2 Details of this finding are described in [52] or in the next
section for the case considered there.

According to (11) we construct the wave function Ψ ′, which
will be an eigenfunction of the Hamiltonian (18):

Ψ ′ = U

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

ψ
(1)
+

ψ
(2)
+

ψ
(3)
+

ψ
(1)
−

ψ
(2)
−

ψ
(3)
−

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

ψ
(+)
+

ψ
(−)
+

ψ
(3)
+

ψ
(+)
−

ψ
(−)
−

ψ
(3)
−

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

. (20)

Due to the correspondence (19) the desired eigenvalue
equation forH ′ and Ψ ′ (10) can be written in the following
explicit form:

⎛

⎜
⎜⎜
⎜
⎜
⎝

h′11 0 0 0 0 0
0 h′22 0 0 0 0
0 0 h′33 0 0 0
0 0 0 h′′11 0 0
0 0 0 0 h′′22 0
0 0 0 0 0 h′′33

⎞

⎟
⎟⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

ψ
(+)
+

ψ
(−)
+

ψ
(3)
+

ψ
(+)
−

ψ
(−)
−

ψ
(3)
−

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

E22ψ
+)
+

E21ψ
−)
+

E23ψ
(3)
+

E21ψ
(+)
−

E22ψ
(−)
−

E23ψ
(3)
−

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

.

The correspondence between the energy branches Ek and
the components ψ

(±)
± , which we have called the energy

states, can be found from the right hand side of the last
equality:

E21 −→ ψ
(−)
+ , ψ

(+)
− ,

E22 −→ ψ
(+)
+ , ψ

(−)
− ,

E23 −→ ψ
(3)
+ , ψ

(3)
− . (21)

Having set in (20) the explicit form of the matrix U we
find the wave functions of the states having energy Ek as
a superposition of spin–color spin states ψ

(a)
± of the non-

transformed space:

ψ
(+)
± = u11ψ

(1)
± +u12ψ

(2)
±

=
(
2P̂⊥
)−1/2(

P̂⊥+G/2
)1/2
eiαψ

(1)
±

± p̂−
(
2P̂⊥
)−1/2(

P̂⊥+G/2
)−1/2

e−iαψ
(2)
± ,

ψ
(−)
+ = ψ

(−)
− = u21ψ

(1)
± +u22ψ

(2)
±

=∓p̂+
(
2P̂⊥
)−1/2(

P̂⊥+G/2
)−1/2

eiαψ
(1)
±

+
(
2P̂⊥
)−1/2(

P̂⊥+G/2
)1/2
e−iαψ

(2)
± .

Having written the momentum operators p̂i in the polar
coordinates r and ϕ

p̂1± ip̂2 =−ie
±iϕ

(
∂

∂r
±
i

r

∂

∂ϕ

)
,

and applying the recurrent formula for differentiation of
the Bessel functions Jm(x),

J ′m(x) =
m

x
Jm(x)−Jm+1(x) = Jm−1(x)−

m

x
Jm(x),
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we easily establish the action of these operators on the
Bessel functions:
(
p̂1± ip̂2

)
Jm(p⊥r)e

imϕ =±ip⊥Jm±1(p⊥r)e
i(m±1)ϕ,

p̂2⊥Jm(p⊥r)e
imϕ =

(
p̂1± ip̂2

)(
p̂1∓ ip̂2

)
Jm(p⊥r)e

imϕ

= p2⊥Jm(p⊥r)e
imϕ,

P̂⊥ψ
(i)
± =

√
p̂2⊥+ g

2τ/4ψ
(i)
± = P⊥ψ

(i)
± .

(22)

As is seen the action of the operators p̂1± ip̂2 shift the state
with m to the state with m±1. This means that, in the
quantized spectrum case, when the transverse momentum
p⊥ gets values determined by the chromomagnetic quan-
tum numberm, p⊥ = α

(N)
m /r0, and we do not sum over this

quantum number, the energy states will be a superposition
of the states with the different values ofm:

ψ
(+)
± =

sin(p3z)√
2P⊥

eimϕ
√
2π

[
(P⊥+G/2)

1/2eiαJm(p⊥r)ζ
(1)
±

∓ ip⊥(P⊥+G/2)
−1/2e−iαJm−1(p⊥r)e

−iϕζ
(2)
±

]
,

ψ
(−)
± =

sin(p3z)√
2P⊥

eimϕ
√
2π

×
[
∓ ip⊥(P⊥+G/2)

−1/2eiαJm+1(p⊥r)e
iϕζ
(1)
±

+(P⊥+G/2)
1/2e−iαJm(p⊥r)ζ

(2)
±

]
.

In the case of a continuous spectrum, the transverse mo-
mentum p⊥ and the spectrum do not depend onm and we
can sum over this quantum number in the energy states,
as we did in (8). This just leads to a replacement of the
momentum operators by their eigenvalues, and then the
energy states have got the form

ψ
(+)
± =

1
√
2P⊥
(P⊥+G/2)

1/2eiαψ
(1)
±

∓
ip⊥√
2P⊥
(P⊥+G/2)

−1/2e−iαψ
(2)
± ,

ψ
(−)
± =∓

ip⊥√
2P⊥
(P⊥+G/2)

−1/2eiαψ
(1)
±

+
1

√
2P⊥
(P⊥+G/2)

1/2e−iαψ
(2)
± . (23)

It can be found from (23) that all energy states have wave
functions with the same modulus:

∣∣ψ(±)±
∣∣2 =

P⊥±G/2

2P⊥

∣∣ψ(1)±
∣∣2+
P⊥∓G/2

2P⊥

∣∣ψ(2)±
∣∣2

=
1

6

[
+∞∑

m=−∞

1

2π
eimϕ exp(ip3z)Jm(p⊥r)

]2

= F 2(r) . (24)

This means that distributions of particles on the states
with energy E2 or E1 are same and do not depend on the
spin or color quantum numbers. This is a result of the in-
variance of the distribution with respect to the transform-
ation (11):

∣
∣ψ(+)±

∣
∣2+
∣
∣ψ(−)±

∣
∣2 =
∣
∣ψ(1)±

∣
∣2+
∣
∣ψ(2)±

∣
∣2.

As is known, eigenfunctions of any conserved quantity
are eigenfunctions of the Hamiltonian as well. Now we
wish to make clear what the conserved operator is in 6-
dimensional combined spin–color spin space, the eigen-
functions of which are the found energy states ψ

(±)
± . Of

course, the sought operator determines the branches of the
spectrum and will commute with H ′. In order to find this
operator, let us divide the Hamiltonian (7) into a diagonal
part p2+ 12g

2τI2+M
2, which does not change under the

transformation (12), and a non-diagonal part [19, 48],

(
σiPi
)2
−

(
p2+

1

2
g2τI2

)

= gτ1/2
(
p1λ

1+p2λ
2−
1

2
gτ1/2σ3λ3

)
, (25)

which becomes diagonal under this transformation:

U−1gτ1/2
(
p1λ

1+p2λ
2−
1

2
gτ1/2σ3λ3

)
U

=

(
U−1+ 0
0 U−1−

)(
(λbIb)+ 0
0 (λbIb)−

)(
U+ 0
0 U−

)

=

(
(λbIb)r+ 0
0 (λbIb)r−

)
. (26)

This non-diagonal term is the interaction term of the par-
ticle with the chromomagnetic background. Here the two
operators (λbIb)± = gτ

1/2
(
p1λ

1+ p2λ
2∓ 12gτ

1/2λ3
)
cor-

respond to the two different spin states of the particle and
in the transformed spin–color spin space these operators
have got a diagonal form:

(λbIb)r+ =

⎛

⎝
−GP⊥ 0 0
0 GP⊥ 0
0 0 0

⎞

⎠ ,

(λbIb)r− =

⎛

⎝
GP⊥ 0 0
0 −GP⊥ 0
0 0 0

⎞

⎠ .

As is seen from (9) and (26), the term with the ± sign in
the energy spectrum has appeared by this term, which can
be written as the scalar product of two color vectors3 λb

and Ib:

(λbIb) = gλb
(
Abj pj−

g

4
εij3f

acbAaiA
c
j σ
3

)

= 2g

(
Ajpj−

1

2
F12σ

3

)
. (27)

Here F12 = F
3
12λ

3/2. This product is the projection of the
color spin operator λb onto the color vector Ib, and in
the rotated color space this projection has got the diag-
onal form with the three eigenvalues ±GP⊥, 0. The three
different branches of the energy spectrum correspond to
these three values of the (λbIb) projection. Since the op-
erator σ3/2 commutes with the general Hamiltonian (7),

3 By vector here we mean an eight component quantity in
color space.
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and consequently is a conserved quantity, this operator
describes the spin of the particle in the field (4). The
two Hamiltonians H± correspond to the two eigenval-
ues of this operator and each one in diagonalized form
has three different eigenvalues E1, E2, E3. Three differ-

ent eigenfunctions ψ
(±),(3)
± correspond to these eigenval-

ues of the spectrum. But the operator λ3 does not com-
mute with (7), and consequently it is not a conserved op-
erator in spite of the field (4) being directed along the
third axis in the color space as well. This is a reason why
λ3 does not determine the branches of the energy spec-
trum (9) and the projection of this operator onto the chro-
momagnetic field is not a suitable quantity for the descrip-
tion of the color states. A projection of the λ operator
onto the color vector I, i.e. the scalar product (27), com-
mutes with the Hamiltonian (7), i.e., is a conserved quan-
tity. As we see from this analysis, the term with the ±
sign in the energy spectra (9) coming from the (λbIb)±
term in the Hamiltonians (6) in fact results in splitting
of the energy spectrum into three branches, which corres-
pond to the eigenvalues of this projection. The wave func-
tions ψ

(±)
± describing states with the energies from these

branches of spectra are eigenfunctions of the operator (27)
as well. Though the two different operators (λbIb)− and
(λbIb)+ correspond to the two different eigenvalues of the
spin operator, the different eigenvalues of these opera-

tors coincide: (λbIb)
(+)
+ = (λbIb)

(−)
− =−GP⊥, (λbIb)

(−)
+ =

(λbIb)
(+)
− = GP⊥, (λbIb)

(3)
+ = (λ

bIb)
(3)
− = 0. Consequently,

the wave functions of the states with the same spin projec-
tion, but with different value of (λbIb)r, describe the dif-

ferent energy branches: ψ
(+)
+ →E2, ψ

(−)
+ →E1 and ψ

(+)
− →

E1, ψ
(−)
− → E2, and wave functions of the states with

the same projection (λbIb)r, but with different spin pro-
jections, describe the different energy branches as well:
ψ
(+)
+ → E2, ψ

(+)
− → E1 and ψ

(−)
+ → E1, ψ

(−)
− → E2. Since

this operator has three eigenvalues instead of six, there
arises a twofold degeneracy, which cannot be classified ei-
ther as spin degeneracy or as degeneracy on the eigenvalues
of the projection (λbIb)r. In the transformed space, where
the operator (λbIb) has got its diagonal form,

(λbIb)r =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−GP⊥ 0 0 0 0 0
0 GP⊥ 0 0 0 0
0 0 0 0 0 0
0 0 0 GP⊥ 0 0
0 0 0 0 −GP⊥ 0
0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠
, (28)

it can be written as the product of two operators,
−σ3(λbIb)r+, and it is easily found that the degeneracy
of the energy spectrum is the degeneracy on this prod-
uct. Having expressed the spectrum branches in terms
of the projections of σ3 and (λbIb)r+ we can establish
the values of these projections, on which these branches
coincide:

E
(
σ3 = 1 ; (λbIb)r =−GP⊥

)

=E
(
σ3 =−1 ; (λbIb)r = GP⊥

)
=E2 ,

E
(
σ3 = 1 ; (λbIb)r = GP⊥

)

=E
(
σ3 =−1 ; (λbIb)r =−GP⊥

)
=E1 .

Thus we conclude, that this is a degeneracy on the quan-
tity (27), which includes spin, color spin and momentum,
in spite of there being no degeneracy on this quantities sep-
arately. As a result of this degeneracy the states having
different quantum numbers σ3 and (λbIb)r have got the

same energy: ψ
(+)
+ , ψ

(−)
− →E2 and ψ

(+)
− , ψ

(−)
+ → E1. After

this analysis we come to idea to write the energy states as
eigenfunctions of the (λbIb)r± operator, introducing unit
eigenvectors ζ(±) of these operators:

(λbIb)r±ζ
(±) =±GP⊥λ

3ζ(±) =±GP⊥(±ζ
(±)) ,

(λbIb)r+ζ
(3) = GP⊥λ

3ζ(3) = 0 , (29)

which are basis vectors of the transformed color space as
well:

ζ(+) =
1
√
3

⎛

⎝
1
0
0

⎞

⎠ , ζ(−) =
1
√
3

⎛

⎝
0
1
0

⎞

⎠ , ζ(3) =
1
√
3

⎛

⎝
0
0
1

⎞

⎠ .

Then the energy states can be expressed on this basis as
follows:

ψ
(±)
± = ζ(±)ξ±F (r) . (30)

As we noted, the term (λbIb) describes the interaction
of the particle with the external field. This interaction oc-
curs by means of the chromomagnetic moment of the par-
ticle due to its spin, which is included in the last term
in (27) and by the chromomagnetic moment acquired due
to the orbital moment, which we suppose is hidden in the
first term of (27). In the Abelian theory, in the motion of an
electron in an axial magnetic field given by the vector po-
tential Aµ =

(
0 , − 12yHz ,

1
2xHz , 0

)
, the term Ajpj in the

Hamiltonian is written as the interaction term of the mag-
netic moment of electron due to the orbital moment Lz
with the magnetic fieldHz [11]:

e

m0c
Ajpj =−

eHz

2m0c
Lz =−

eHzh̄

2m0c
m .

This term eliminates the degeneracy of the energy levels on
the magnetic quantum numberm and leads to the physical
effect of splitting of the energy spectrum levels in the mag-
netic field. In our non-Abelian Landau problem the term
gλbAbj pj = 2gAjpj cannot be written proportional to the
orbital moment. It has the color matrix structure

λbAbj pj = G

⎛

⎝
0 p− 0
p+ 0 0
0 0 0

⎞

⎠

and acting of the p± on the wave functions e
imϕJm(p⊥r)

is given by (22). In the quantized spectrum case p⊥ =

α
(N)
m /r0 and for this interaction term we have the following
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eigenvalues:

λbAbj pje
imϕJm(p⊥r)

⎛

⎜
⎝
ξ
(1)
±

ξ
(2)
±

ξ
(3)
±

⎞

⎟
⎠

= G
α
(N)
m

r0

⎛

⎜
⎝
−ei(m−1)mϕJm−1

(
α
(N)
m r/r0

)
ξ
(2)
±

ei(m+1)mϕJm+1
(
α
(N)
m r/r0

)
ξ
(1)
±

0

⎞

⎟
⎠ .

As is seen, the term gλbAbj pj in the Hamiltonian does not
lead to the appearance of the terms with a factor of the
chromomagnetic quantum number m and shifts the state
with m to the states with m±1. But this term contains
α
(N)
m , which depends on m and on N . This means that the
term gλbAbj pj splits the spectrum into a series defined by
N and the levels in the series are defined by m. Let us re-
call that the radii a

(N)
m of the orbits, in which the particle

rotates in this field, are also determined by α
(N)
m , i.e. by

both quantum numbers, m and N [7]: a
(N)
m =mr0/α

(N)
m .

Thus we conclude that the interaction term gAjpj in the
non-Abelian theory, as a result of the interaction of the
chromomagnetic moment due to the orbital moment with
the chromomagnetic background, eliminates the degener-
acy on m and N and splits the energy levels in the quan-
tized spectrum case. Beside this splitting, this interaction
shifts the particle from the statem to the statesm±1 and
consequently from the orbit a

(N)
m to the orbits a

(N)
m±1 in de-

pendence of the projection of λ3 onto the chromomagnetic
field. In the transformed color space, according to (29)
this interaction term splits the spectrum into branches,
and each branch contains a factor GP⊥ = G

√
p2⊥+G

2/4 =

G
√
(α
(N)
m /r0)2+G2/4, which splits the spectrum branches

into the series.

3 Spherical background

Let us consider the case of a constant spherical chromo-
magnetic field defined by the constant vector potential:

Aa1 =
√
τδ1a , A

a
2 =
√
τδ2a , A

a
3 =
√
τδ3a , A

a
0 = 0 .
(31)

This field has a strength tensor with the following non-zero
components:

F 123 = F
2
31 = F

3
12 =H

1
x =−H

2
y =H

3
z = gτ (32)

and possesses spherical symmetry in ordinary space and
in the subspace of the first three coordinates in the color
space. The squared Dirac equation (2) in the field (31) has
got the following explicit form:

(
p2+M2+

3g2τ

4
+ gτ1/2λapa−

g2τ

2
σaλa

)
Ψ =E2Ψ .

(33)

The spinor Ψ has the two components ψ+ and ψ−, and each
of them transforms under the fundamental representation
of the SUc(3) color group. Because the external field (32)
has the three non-zero components in both spaces, in this
case the spin and color spin states of the particle cannot be
described by the projection of the σ3 and λ3 operators. So

the components ψ
(a)
± are not eigenfunctions of these opera-

tors and do not describe states with definite values of their
projections onto the field.
Equation (33) contains the non-diagonal σa and λa ma-

trices, which make it non-diagonal. As a result, this equa-
tion does not split into independent ones for the compo-
nents ψ

(a)
± . From (33) can be obtained the determinant

equation, which is the same for all states ψ
(i)
j (i= 1, 2) and

has the following solution [7]:

ψ
(i)
j (r) =

Cνl
|p|
√
r
Jl+1/2(|p|r)Y

m
l (θ, ϕ)ξ

(i)
j , (34)

where Jl+1/2(|p|r) is a Bessel function of the first kind,
Yml (θ, ϕ) are spherical functions, C

ν
l are normalizing con-

stants (Cνl = |p|), and the ξ
(i)
j are the spin and color spin

parts of the wave function. Solving (33) for the energy gives
the following branches of the continuous spectrum in the
infinite motion case [14–17]:

E21,2 =

(√
p2∓

G

2

)2
+M2,

E23,4 =

(√
p2+G2∓

G

2

)2
+M2,

E25 = p
2+M2,

and the quantized spectrum branches in the case of the fi-
nite motion inside the sphere [7] are

E21,2 =

(
α
(N)
l

r0
∓
G

2

)2
+M2,

E23,4 =

(√(
α
(N)
l

r0

)2
+G2∓

G

2

)2

+M2,

E25 =

(
α
(N)
l

r0

)2
+M2. (35)

Here α
(N)
l are the zeros of Jl+1/2(|p|r), r0 is the radius of

the sphere, and l is the orbital quantum number. Quan-
tized and continuous spectra are interrelated by means
of the replacement |p| = α(N)l /r0, which is the same as
quantization of the momentum in standing waves. Mo-
tion in this case takes place on s, p, d, f , . . . orbitals.
As we observe, the additional non-zero components of the
field strength tensor F 123 and F

2
31 apparently break the re-

maining color and spin symmetry in the Hamiltonian. As
a result of this breakdown the spectrum splits into four
branches as distinct from the axial background field case,
i.e. leads to elimination of the degeneracy of the energy
spectrum. From the spectrum (35) is also seen that the
energy E5 does not contain the interaction term with the
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external field and so does not split into branches. The state
ψ
(3)
j (r) is like the state of a spinless and colorless particle.
But solving (33) by means of its determinant leads to the
absence of a correspondence between the branches of spec-
trum (35) and the solutions (34). Consequently, it is rea-
sonable to find the wave functions, which will describe the
states having a definite energy from these branches, i.e. to
find the energy states in the field (31).
Let us write the explicit matrix form of the Hamiltonian

for (33) in the spin–color spin space:

H =

⎛

⎜
⎜
⎜
⎜⎜
⎝

h11 Gp− 0 0 0 0
Gp+ h22 0 −G2 0 0
0 0 h33 0 0 0
0 −G2 0 h44 Gp− 0
0 0 0 Gp− h55 0
0 0 0 0 0 h66

⎞

⎟
⎟
⎟
⎟⎟
⎠
. (36)

The diagonal elements hii have the expressions

h11 = P
2+G2/4+Gp3 , h22 = P

2+5G2/4−Gp3 ,

h33 = P
2 , h44 = P

2+5G2/4+Gp3 ,

h55 = P
2+G2/4−Gp3 , h66 = P

2 , (37)

where P2 = p2+M2. The Hamiltonian (36) does not have
a quasidiagonal form and so we cannot diagonalize sepa-
rately the two matrices H± with dimensions 3×3 instead
of one with dimensions 6×6. In order to diagonalize (36)
we should make the transformation in the combined space
of spin and color spin. We can find this transformation and
the diagonal form of (36) applying the method used in the
previous section.
As was asserted in the previous section, the diagonal

form of H ′ is unique and the transformation U transform-
ing H into H ′ is unique and unitary due hermiticity of H.
Relying on these two properties, we can find the matrices
H ′ and U simultaneously. From the beginning we find the
determinant of this matrix, which equals

detH = (P2)2((P2+G2/4)2−G2p2)

× ((P2+5G2/4)2−G2p′2)

= detH ′ (38)

and can be written as a product of six factors fi:

f1,2 = P
2 , f3,4 = P

2+G2/4±Gp ,

f5,6 = P
2+5G2/4±Gp′,

where p= |p|=
√
p2, p′ =

√
p2+G2. The sum of these fac-

tors equals the trace of the Hamiltonian (36):

∑

i

fi = 6P
2+3G2 =TrH =

∑

i

hii =
∑

i

h′ii .

According to the invariance of the trace and determinant
of the matrix under the unitary transformation, we may
suppose that the factors fi are the diagonal elements of
the diagonalized HamiltonianH ′. But this is not enough to
find the explicit form of H ′, as we do not know the place

of each of factors fi along the diagonal of H
′ and have

no rule to determine this place. At first, we can assume
some identification of factors fi with the diagonal elements
of H ′ and then write (13) explicitly for this assumption
with unknown U . The equations for uij obtained from (13)
together with the equations obtained from the unitarity
condition will be solved regularly, if the diagonal elements
were identified properly. If the factors fi corresponded to
the diagonal elements h′ii incorrectly, then solving (13) will
lead to mathematical nonsense due to the uniqueness of
H ′. So we make the following identification:

h′11 ≡ f4 = P
2+ g2τ/4−Gp ,

h′22 ≡ f6 = P
2+5g2τ/4−Gp′ ,

h′33 ≡ f1 = P
2 ,

h′44 ≡ f5 = P
2+5g2τ/4+Gp′ ,

h′55 ≡ f3 = P
2+ g2τ/4+Gp ,

h′66 ≡ f2 = P
2 . (39)

Writing (13) for this choice, we get systems of linear equa-
tions relating the elements uij of the transformation ma-
trix U , which are simplified into the following form:

⎧
⎪⎨

⎪⎩

u11 = u21p−/(p−p3) ,

u41 = u21 ,

u51 = u21p+/(p+p3) ,
⎧
⎪⎨

⎪⎩

u12 =−u22p−/
(
p′+p3−G

)
,

u42 =−u22
(
p′−p3−G

)
/
(
p′+p3−G

)
,

u52 =−u22p+/
(
p′+p3−G

)
,

⎧
⎪⎨

⎪⎩

u14 = u24p−/
(
p′−p3+G

)
,

u44 =−u24
(
p′+p3+G

)
/
(
p′−p3+G

)
,

u54 =−u24p+/
(
p′−p3+G

)
,

⎧
⎪⎨

⎪⎩

u15 =−u25p−/(p+p3) ,

u45 = u25 ,

u55 =−u25p+/(p−p3) .

(40)

All other uij are zero except for the u33, u36, u63 and u66
elements.
All other elements uij in (40) are expressed in terms

of u2j . The equations (40) relate 32 unknowns by 24 rela-
tions. So in order to find all uij we need additional rela-
tions. For this purpose we can use relations of the unitarity
condition, which are six equations

∑6
j=1 uiju

∗
ij = 1 and 30

ones
∑6
j=1 uiju

∗
kj = 0, but these relations are nonlinear.

Besides, some of the unitarity relations coincide with other
ones after taking into account the relations of (40) in them.
Thus, taking into account the relations of (40) in the uni-
tary relations and solving them we find only the modulus
of the u2i:

u21u
∗
21 =

p2⊥
4p2
, u22u

∗
22 =

(
p′+p3−G

)2

4p′(p′−G)
,

u24u
∗
24 =

(
p′+p3−G

)2

4p′(p′+G)
, u25u

∗
25 =

p2⊥
4p2
. (41)
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The arguments of u2i remain unknown and we parametrize
them introducing the free angles α, β, γ and δ as follows:

u21 =
p⊥

2p
eiα, u22 =

p′+p3−G

[4p′(p′−G)]1/2
eiβ,

u24 =
p′+p3−G

[4p′(p′+G)]1/2
eiγ , u25 =

p⊥

2p
eiδ. (42)

In the system (40) there is no equation relating these four
elements and so we cannot express one angle in terms of the
other ones4. As the elements u3j , uj3, u6j and uj6 are equal
to zero, (13) gives trivial relations for the elements u33, u36,
u63 and u66 and does not relate them with any other uij
in (40). The relations for these elements, obtained from the
unitarity condition, consist of the following ones:

⎧
⎪⎨

⎪⎩

u33u
∗
33+u36u

∗
36 = 1 ,

u63u
∗
63+u66u

∗
66 = 1 ,

u33u
∗
63+u36u

∗
66 = 0 .

(43)

The relations in (43) are nonlinear and their number is less
than the number of unknowns. Consequently, we get one
more free parameter introducing the angle θ in order to
parametrize the elements in (43):

u33 = cos θ , u36 = sin θ ,

u63 = sin θ , u66 =− cos θ .

It is reasonable to assume that under the U transformation
the states ψ

(3)
± do not change, since these states are like col-

orless states (λ3 = 0). Under this assumption we can fix the
parameter θ = 0 and then u33 =−u66 = 1, u36 = u63 = 0.
As has been expressed before, the Hamiltonian (36)

owing to the non-zero h42 and h24 elements has no quasidi-
agonal form and mixes different spin states. So we cannot
demand the unimodularity of any block of the U matrix,
as we did in the previous case. We also have no additional
conditions to cut down the number of free parameters (α,
β, γ, δ) or fix them. Thus, the U matrix contains four free
parameters and has the following explicit form:

U =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

p−P⊥/P3 −p−/P1 0 p−/P2 p−P
′
⊥/P4 0

P⊥
(
p′+p3−G

)
/P1 0

(
p′−p3+G

)
/P2 P′⊥ 0

0 0 1 0 0 0

P⊥
(
p′−p3−G

)
/P1 0 −

(
p′+p3+G

)
/P2 P′⊥ 0

p+P⊥/P4 p+/P1 0 −p+/P2 p+P
′
⊥/P3 0

0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(44)

where P1 = [4p′(p′−G)]1/2e−iβ, P2 = [4p′(p′+G)]1/2e−iγ ,
P3,4 = p∓p3, P⊥ = (p⊥/2p)eiα, P ′⊥ =−(p⊥/2p)e

iδ. Trans-

forming the basis vectors ψ
(i)
j under the U transformation,

we can construct the energy states according to (20). Mul-
tiplying the U matrix (44) by the column of solutions (34)

4 This was done in the previous case.

we find the energy states:

ψ
(+)
+ =

p−P⊥
P3
ψ
(1)
1 (r)−

p−

P1
ψ
(2)
1 (r)

+
p−

P2
ψ
(1)
2 (r)+

p−P ′⊥
P4
ψ
(2)
2 (r) ,

ψ
(−)
+ = P⊥ψ

(1)
1 (r)+

(
p′+p3−G

)

P1
ψ
(2)
1 (r)

+

(
p′−p3+G

)

P2
ψ
(1)
2 (r)+P

′
⊥ψ
(2)
2 (r) ,

ψ
(+)
− = P⊥ψ

(1)
1 (r)+

(
p′−p3−G

)

P1
ψ
(2)
1 (r)

−

(
p′+p3+G

)

P2
ψ
(1)
2 (r)+P

′
⊥ψ
(2)
2 (r) ,

ψ
(−)
− =

p+P⊥
P4
ψ
(1)
1 (r)+

p+

P1
ψ
(2)
1 r

−
p+

P2
ψ
(1)
2 (r)+

p+P ′⊥
P3
ψ
(2)
2 (r) . (45)

We can replace all momentum operators in (45) by their
eigenvalues. This does not lead to any changes in (45). Re-
mark that the transformation U acts on the 6-dimensional
combined space of spin and color spin, so the up and down
± signs in ψ

(±)
± in (45) are just only a matter of notation

and have no meaning as projection signs.
Comparing the spectrum branches (34) with the diag-

onal elements ofH ′ (39), we write down the obvious corres-
pondence between them:

E1 −→ h
′
11 ,

E2 −→ h
′
55 ,

E3 −→ h
′
22 ,

E4 −→ h
′
44 .

Using this correspondence we can write the eigenvalue
equation (10) for H ′ by the eigenfunctions ψ

(±)
± (45) and

the spectrum (35):

⎛

⎜
⎜
⎜
⎜⎜
⎝

h′11 0 0 0 0 0
0 h′22 0 0 0 0
0 0 h′33 0 0 0
0 0 0 h′44 0 0
0 0 0 0 h′55 0
0 0 0 0 0 h′66

⎞

⎟
⎟
⎟
⎟⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

ψ
(+)
+

ψ
(−)
+

ψ
(3)
+

ψ
(+)
−

ψ
(−)
−

ψ
(3)
−

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

E21ψ
(+)
+

E23ψ
(−)
+

E25ψ
(3)
+

E24ψ
(+)
−

E22ψ
(−)
−

E25ψ
(3)
−

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

.

Thus, we find the wave functions of a colored particle
describing the states having the energy from the spec-
trum (34). This can be written in the following correspon-
dence between the states (45) and branches of the energy
spectrum (34):

E1 −→ ψ
(+)
+ ,

E2 −→ ψ
(−)
− ,

E3 −→ ψ
(−)
+ ,

E4 −→ ψ
(+)
− .
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Consider now the operator which determines the branches
of the spectra (34), i.e., separate the term in Hamiltonian
describing the interaction of the particle with the external
field. The non-diagonal part of the Hamiltonian (36),

gτ1/2λb
(
pb−

gτ1/2

2
σb
)
= gλb

(
Abj pj−

g

4
εijkf

acbAaiA
c
j σ
k

)

= (λbIb), (46)

under the transformation (12) with the U matrix (44)
transforms it to diagonal form:

(λbIb)r = U−1(λbIb)U

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−Gp 0 0 0 0 0
0 −Gp′ 0 0 0 0
0 0 0 0 0 0
0 0 0 Gp′ 0 0
0 0 0 0 Gp 0
0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠
. (47)

Here εijk is the unit antisymmetric tensor. As is seen
from (47), in this case the diagonal form of the opera-
tor (47) has five different eigenvalues, each one of which
corresponds to the one branch of the energy spectrum (34).
In the non-transformed space this operator can also be
written in terms of the interactions of the chromomagnetic
moments with the chromomagnetic background:

(λbIb) = gλb
(
Abj pj−

1

2
εijkF

b
ijσ
k

)

= 2g

(
Ajpj−

1

2
εijkFijσ

k

)
. (48)

The second term in (48) describes the interaction of the
particle with the external field due to its spin, and first one
hides the interaction with the external field due to the or-
bital moment. In the transformed space these two kinds of
interactions are joined in the eigenvalues ±Gp, ±Gp′ and
0 and cannot be separated. The operator (λbIb) commutes
with the Hamiltonian (36) and the quantity corresponding
to it is conserved. Thus we conclude that in external fields,
given by the non-commuting potentials (4) and (31), the
projection (λbIb) describes the interaction of the chromo-
magnetic moment of the particle with the external chro-
momagnetic field and causes the splitting of the energy
spectrum into the branches and levels. States with a defi-
nite energy in these fields are determined by this projection
instead of the projection of spin and color spin onto the
field, i.e. are defined in that basis, in which this projection
has got the diagonal form.

4 Superpartner states

As we know [18, 19], (2) in the field (5) possesses super-
symmetry, i.e., for the motion with p3 = 0 the Hamiltonian
H1 =H −M2 and the two operators Q± = P∓a±, which
are named the supercharge operators, form a supersymme-
try algebra in quantum mechanics [41–47]:

{Q+, Q−}=H1 , [Q±,H1] = 0 , Q
2
+ =Q

2
− = 0 . (49)

Here the braces denote an anticommutator and the square
brackets denote a commutator. Defined by the formulae

P± = P1± iP2 , a± =
1

2
(σ1± iσ2) (50)

the operators P± and a± obey the following commuta-
tion and anticommutation relations for the annihilation
and creation operators of bosonic and fermionic states,
respectively:

[P+, P−] = λ
3gH3z , {a+, a−}= 1 . (51)

Let us remark that the operators for creation and annihi-
lation of the bosonic states interchange roles for the state
having the value λ3 = 1 with the state having the value
λ3 =−1 [19], which can be seen from (51). The action of
the fermionic operators a± turns over the spin of the par-
ticle:

a+ξ− =

(
0 1
0 0

)(
0
1

)
=

(
1
0

)
= ξ+ , a+ξ+ = 0 ;

a−ξ+ =

(
0 0
1 0

)(
1
0

)
=

(
0
1

)
= ξ− , a−ξ− = 0 . (52)

Since the action of a+ on

(
ψ+
ψ−

)
gives ψ− and a− gives ψ+,

the bosonic creation operator P+ acts only on the ψ+ state
and the annihilation operator P− only on the ψ− state:

P+

⎛

⎜
⎝
ψ
(1)
+

ψ
(2)
+

ψ
(3)
+

⎞

⎟
⎠=

⎛

⎝
p+ G 0
0 p+ 0
0 0 p+

⎞

⎠

⎛

⎜
⎝
ψ
(1)
+

ψ
(2)
+

ψ
(3)
+

⎞

⎟
⎠

=

⎛

⎜
⎝
p+ψ

(1)
− +Gψ

(2)
−

p+ψ
(2)
−

p+ψ
(3)
−

⎞

⎟
⎠ ,

P−

⎛

⎜
⎝
ψ
(1)
−

ψ
(2)
−

ψ
(3)
−

⎞

⎟
⎠=

⎛

⎝
p− 0 0
G p− 0
0 0 p−

⎞

⎠

⎛

⎜
⎝
ψ
(1)
−

ψ
(2)
−

ψ
(3)
−

⎞

⎟
⎠

=

⎛

⎜
⎝

p−ψ
(1)
+

Gψ(1)+ +p−ψ
(2)
+

p−ψ
(3)
+

⎞

⎟
⎠ . (53)

Using the supercharge operators it is easy to observe the
spin diagonal form of the HamiltonianH1:

H1

(
ψ+
ψ−

)
=

(
P−P+ 0
0 P+P−

)(
ψ+
ψ−

)
. (54)

Note that the actions of the bosonic creation and annihi-
lation operators P± mix the different color states ψ

(1) and
ψ(2). In supersymmetric quantum mechanics each quan-
tum mechanical state of a particle is labeled by fermionic
and bosonic quantum numbers [41–44]. States having the
same energy are called superpartner states in this the-
ory, but they have different fermionic and bosonic quan-
tum numbers. The action of the supercharge operatorsQ±
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change the fermionic and bosonic quantum numbers and
convert the superpartner states into each other.
In the first section we have established that energy

states having different spin projections, namely the states
ψ
(−)
+ and ψ

(+)
− and the states ψ

(+)
+ and ψ

(−)
− , have the

same energies. So we have a reason to look for superpart-
ner states among the states ψ

(±)
+ and ψ

(±)
− . Since these

states differ by the spin projection we can assert that
they are turned into each other under the action of the
fermionic operators a±. If we find a couple of mutually her-
mitian bosonic operators P±, which obey (51) and (54),
and change the upper index of ψ(±), i.e. act by the rule
P±ψ

(±)→ ψ(∓), then we can construct the supercharge op-
eratorsQ± by means of these operators, and they will obey

the supersymmetry algebra (49) and will map ψ
(±)
± into

each other:

Q+ψ
(+)
− = q1ψ

(−)
+ , Q+ψ

(−)
− = q2ψ

(+)
+ ;

Q−ψ
(−)
+ = q′1ψ

(+)
− , Q−ψ

(+)
+ = q′2ψ

(−)
− . (55)

The states ψ
(−)
+ and ψ

(+)
− and the states ψ

(+)
+ and ψ

(−)
−

will be superpartner states in the framework of this super-
symmetry. So for the superpartnership of these states it is
enough to find suitable bosonic operators.
Under the U transformation the operators P± trans-

form as well:

U−1± H±U± = U
−1
± P∓P±U±

= U−1± P∓U±U
−1
± P±U± = P

′
∓P

′
± . (56)

Applying the U± transformation we find the P
′
± operators

in the new basis:

P ′+ =
1

2P⊥

×

⎛

⎝
2p+(P⊥+G/2) G(P⊥+G/2)e−2iα 0

−Gp2+(P⊥+G/2)
−1e2iα 2p+(P⊥−G/2) 0

0 0 2P⊥p+

⎞

⎠ ,

P ′− =
1

2P⊥

×

⎛

⎝
2p−(P⊥+G/2) −Gp2−(P⊥+G/2)

−1e−2iα 0
G(P⊥+G/2)e2iα 2p−(P⊥−G/2) 0

0 0 2P⊥p−

⎞

⎠ .

(57)

The products of the transformed bosonic operators are the
diagonalized Hamiltonians H ′± (17) and (26) withM

2 = 0
and p3 = 0:

P ′−P
′
+ =H

′
+ , P

′
+P

′
− =H

′
− . (58)

It is clear that the new supercharge operators Q′± = P
′
∓a±

will obey the supersymmetry algebra (49) with the diago-
nalized HamiltonianH ′:

{Q′+, Q
′
−}=H

′
1 , [Q

′
±,H

′
1] = 0 , Q

′2
+ =Q

′2
− = 0 . (59)

But we see from the explicit form of P ′± that the action of

these operators on Ψ ′ =

⎛

⎜
⎝
ψ
(+)
±

ψ
(−)
±

ψ
(3)
±

⎞

⎟
⎠ does not map the states

ψ(+) and ψ(−) into each other and mixes these states. This
means that in the result of the action of these operators
we get a superposition of the ψ(±) states, i.e. states hav-
ing an uncertain energy. So the operators P ′± are unusable
to build a supersymmetry algebra in which the states ψ(+)

and ψ(−) would turn out to be superpartners. But, fortu-
nately, there can be constructed another mutually hermi-
tian conjugate couple of P ′′± operators:

P ′′+ = P⊥λ
1+ iλ2G/2+p+(I3− I2)

=

⎛

⎝
0 P⊥+G/2 0

P⊥−G/2 0 0
0 0 p+

⎞

⎠ ,

P ′′− = P⊥λ
1− iλ2G/2+p−(I3− I2)

=

⎛

⎝
0 P⊥−G/2 0

P⊥+G/2 0 0
0 0 p−

⎞

⎠ , (60)

which obey the commutation relation [P ′′+, P
′′
−] = 2λ

3GP⊥.
The product of these operators also givesH ′±:

P ′′−P
′′
+ =H

′
+ , P

′′
+P

′′
− =H

′
−

and so the supercharge operators constructed using Q′± =
P ′′∓a± also obey the supersymmetry algebra (59). The ac-
tion of the P ′′± operators on Ψ

′ change the upper index of
the components of this wave function:

P ′′+

⎛

⎝
ψ(+)

ψ(−)

ψ(3)

⎞

⎠=

⎛

⎝
(P⊥+G/2)ψ(−)

(P⊥−G/2)ψ(+)

p+ψ
(3)

⎞

⎠ ,

P ′′−

⎛

⎝
ψ(−)

ψ(+)

ψ(3)

⎞

⎠=

⎛

⎝
(P⊥−G/2)ψ(+)

(P⊥+G/2)ψ(−)

p−ψ
(3)

⎞

⎠ . (61)

The action of these operators on ζ(±),3 is given by the for-
mulae

P ′′+ζ
(+) = (P⊥−G/2)ζ

(−), P ′′+ζ
(−) = (P⊥+G/2)ζ

(+);

P ′′−ζ
(+) = (P⊥+G/2)ζ

(−), P ′′−ζ
(−) = (P⊥−G/2)ζ

(+);

P ′′±ζ
(3) = p±ζ

(3). (62)

So this action changes the orientation of the Ib vec-
tor in the transformed color space. The operators b± =
P ′′±/(2GP⊥)

1/2 obey the Heisenberg–Weyl algebra

[b+, b−] = 1

for the state ζ(+), i.e., they are the creation and annihila-
tion operators, respectively. For the state ζ(−) these opera-
tors obey the commutation relation

[b−, b+] = 1 ,

which again means interchanging the roles of the creation
and annihilation operators of the ζ(+) state.
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We can write the action of the Q′± operators on ψ
(±)
±

using (62), (52) and (30):

Q′+ψ
(+)
− = P ′′−a+ξ−ζ

(+)F (r) = (P⊥+G/2)ψ
(−)
+ ,

Q′+ψ
(−)
− = P ′′−a+ξ−ζ

(−)F (r) = (P⊥−G/2)ψ
(+)
+ ,

Q′−ψ
(−)
+ = P ′′+a−ξ+ζ

(−)F (r) = (P⊥+G/2)ψ
(+)
− ,

Q′−ψ
(+)
+ = P ′′+a−ξ+ζ

(+)F (r) = (P⊥−G/2)ψ
(−)
− ,

Q′+ψ
(−)
+ =Q′+ψ

(+)
+ =Q′−ψ

(+)
− =Q′−ψ

(−)
− = 0 ;

Q′−ψ
(3)
+ = p+ψ

(3)
− , Q

′
+ψ
(3)
− = p−ψ

(3)
+ . (63)

This action simultaneously changes the signs of the spin
and the (Ibλb) projection so that the energy of the state
remains unchanged. The eigenvalues qi of the supercharge
operators follow from these actions:

q1 = q
′
1 = P⊥+G/2 , q2 = q

′
2 = P⊥−G/2 .

If we recall the relationship between the degree n of the
degeneracy of the spectrum and the number N of the su-
percharge operatorsQ′±,

n= 2[N/2],

where [N/2] denotes the integer part of N/2, then in this
choice of the supercharge operators it is easy to explain
the twofold degeneracy of the energy spectrum, which we
have discussed in the first section, as a result of the su-
persymmetry in the Hamiltonian.5 Thus, the action of the
supercharge operators (63) ensure the superpartnership of

the energy states ψ
(−)
+ with ψ

(+)
− and ψ

(+)
+ with ψ

(−)
− .

Using (59) we can divide the Hamiltonian H ′1 into
bosonicHB and fermionicHF parts:

H ′1 =
{
Q′+, Q

′
−

}
= 2GP⊥b+b−−2λ

3GP⊥a+a−

= 2GP⊥

(
b+b−+

1

2

)
+2GP⊥

(
(−λ3)a+a−−

1

2

)

=HB+HF . (64)

The appearance of the (−λ3) factor in the fermionic part
is connected with the different commutation rules for the
bosonic operators of the ζ(−) and ζ(+) states. Actually,HB
also contains a term proportional to λ3. These two Hamil-
tonians commute6, [HB,HF] = 0, and they can be consid-
ered as Hamiltonians of two independent oscillators having
the same frequency ω = (2GP⊥)1/2 :

HB = ω
2

(
b+b−+

1

2

)
, EB = ω

2

(
nB+

1

2

)
;

HF = ω
2

(
(−λ3)a+a−−

1

2

)
, EF = ω

2

(
(−λ3)nF−

1

2

)
.

(65)

5 In [18, 19, 50] this degeneracy was related with the super-
symmetry, but appropriate supercharge operators responsible
for this degeneracy had not been found, since the energy states
was not determined.
6 HB and HF do not commute in another basis [50].

In respect to the supersymmetry each quantum mechani-
cal state of the particle with definite energy is described by
the bosonic and fermionic quantum numbers nB and nF ,
which accept the values [41] nB = 0, 1, 2, 3, . . . ; nF = 0, 1.
As is seen from (65) and (64), this takes place for H ′1
and its eigenstates ψ

(±)
± as well. The action of the su-

percharge operators change these quantum numbers as
follows:

Q+(nB, nF) = (nB−1, nF+1) ,

Q+(nB−1, nF+1) = 0 ;

Q−(nB−1, nF+1) = (nB, nF) ,

Q−(nB, nF) = 0 , (66)

but the total energy of the bosonic and fermionic os-
cillators remains unchanged in this action. If we la-
bel the states ψ

(±)
± by these quantum numbers as fol-

lows:

ψ
(−)
− , ψ

(+)
− → (nB, nF) ; ψ

(−)
+ , ψ

(+)
+ → (nB−1, nF+1),

then the two action rules of the supercharge operators (66)
and (63) will agree.

5 Discussion

The non-diagonal generators of the color group make the
equations in Yang–Mills quantum mechanics non-diagonal
as well and we decided to diagonalize the equation of
motion for this case. Relying on the hermiticity of the
Hamiltonian, we find the unitary transformation which di-
agonalizes this equation. Of course, this transformation
transforms the color structure of the Hilbert space and
the transformed basis vectors are the eigenfunctions of the
diagonal Hamiltonian. This enabled us to establish the cor-
respondence between the eigenvalues of the Hamiltonian
and its eigenvectors.
The diagonal form of the Hamiltonian turned out to be

useful for the study of supersymmetry in the case consid-
ered. It allowed us to construct the supercharge operators
mapping eigenvectors corresponding to the same eigen-
values into each other. The superpartner property of the
eigenvectors was easily revealed in this formulation of the
supersymmetry. Also it became possible to divide the diag-
onal Hamiltonian into two commuting parts, correspond-
ing to the two oscillators of bosonic and fermionic states of
supersymmetry.
A number of papers [20–26] have been devoted to

the study of supersymmetric Yang–Mills quantum me-
chanics in connection with the conjecture of Banks, Fis-
chler, Shenker and Susskind concerning the equivalence of
M-theory and D = 10 supersymmetric Yang–Mills quan-
tum mechanics [49]. We hope that the study of the ex-
ample of supersymmetry which we have made here will be
useful for the further study of supersymmetry in Yang–
Mills quantum mechanics in connection with the BFSS
conjecture.
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